Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
نویسندگان
چکیده
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity. Keywords—Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
منابع مشابه
Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملImproving High-Dimensional Bayesian Network Structure Learning by Exploiting Search Space Information
Bayesian networks are frequently used to model statistical dependencies in data. Without prior knowledge of dependencies in the data, the structure of a Bayesian network is learned from the data. Bayesian network structure learning is commonly posed as an optimization problem where search is used to find structures that maximize a scoring function. Since the structure search space is superexpon...
متن کاملAn iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests
A common approach for learning Bayesian networks (BNs) from data is based on the use of a scoring metric to evaluate the fitness of any given candidate network to the data and a method to explore the search space, which usually is the set of directed acyclic graphs (DAGs). The most efficient search methods used in this context are greedy hill climbing, either deterministic or stochastic. One of...
متن کاملA Novel Learning Algorithm for Bayesian Network and Its Efficient Implementation on GPU
Computational inference of causal relationships underlying complex networks, such as gene-regulatory pathways, is NP-complete due to its combinatorial nature when permuting all possible interactions. Markov chain Monte Carlo (MCMC) has been introduced to sample only part of the combinations while still guaranteeing convergence and traversability, which therefore becomes widely used. However, MC...
متن کاملInferring gene regulatory networks from time series data using the minimum description length principle
MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...
متن کامل